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Abstract. We derive dispersion relations for K → ππ decay, using the Lehmann–Symanzik–Zimmermann
formalism, which allows the analytic continuation of the amplitudes with respect to the momenta of the
external particles. No off-shell extrapolation of the field operators is assumed. We obtain generalized Omnès
representations, which incorporate the ππ and πK S-wave phase shifts in the elastic region of the direct and
crossed channels, according to the Watson theorem. The contribution of the inelastic final-state and initial-
state interactions is parameterized by the technique of conformal mappings. We compare our results with
previous dispersive treatments and indicate how the formalism can be combined with lattice calculations
to yield physical predictions.

1 Introduction

The weak decay K → ππ has been a continuous challenge
for the theoretical investigations. Chiral perturbation the-
ory (ChPT) was extensively used [1], but the large number
of unknown counterterms and renormalization constants
render the numerical predictions difficult beyond the lead-
ing order. Most lattice calculations (see [2] and references
therein) simulate matrix elements of the type 〈π|Oi|K〉,
related to the physical matrix elements 〈ππ|Oi|K〉 by low-
est order ChPT [3]. In this procedure the higher order
final-state interactions are completely missing, while it is
expected that they play an important role for the ∆I =
1/2 rule and the CP -violating ratio ε′/ε. The finite-volume
techniques developed in [4] can take into account FSI, but
they are numerically very demanding [2]. In a combined
approach, proposed recently, the results obtained by lat-
tice simulations at unphysical points are extrapolated to
the physical configuration by using calculations to NLO
in ChPT [5,6].

An alternative way to connect the on-shell amplitude
to lattice results at unphysical points and to spectral func-
tions measured experimentally is based on dispersion rela-
tions. This formalism was used some time ago for the CP -
conserving amplitudes in order to explain the ∆I = 1/2
rule [7], and more recently in [8,9] for evaluating the ef-
fects of final-state interactions upon ε′/ε. The last works
use an Omnès representation [10] for the decay amplitude,
written by analogy with the case of the scalar form factor.
This approach was investigated further in [11–15], where
some critical remarks about the method were advanced.

a Unité Propre de Recherche 7061.

An alternative dispersive framework for K → ππ decay
was proposed in [14], by assuming that the weak hamilto-
nian carries a non-zero momentum. Then the matrix ele-
ment of the decay becomes equivalent to the πK elastic
scattering amplitude, for which the Mandelstam represen-
tation is assumed.

In the references mentioned above, the dispersion rela-
tions for the weak decay were written by using the analogy
with the familiar cases of the form factors or the scattering
amplitudes. However, in the weak decay a continuation in
the external momenta is necessary in order to obtain a
dispersion relation. As a proof of the dispersion relations
in this case is missing, their meaning was not always clear
and led to some confusion. The dispersive variable was
interpreted either as the mass or the momentum of an
off-shell particle. The clarification of this point is possible
only by a systematic derivation in the frame of a field theo-
retic formalism. In the present work we address this prob-
lem by performing the continuation in the external mo-
menta with the Lehmann–Symanzik–Zimmermann (LSZ)
formalism [16]. Our main result is a general Omnès repre-
sentation for the K → ππ amplitudes, including final- and
initial-state interactions in both the direct (K → ππ) and
the crossed (π → πK) channels. The derivation clarifies
the significance of the dispersive variables, allowing one to
make contact with lattice calculations done at unphysical
points.

In the next section we present the derivation of the dis-
persion relations, using LSZ reduction and hadronic uni-
tarity. We follow to some extent the dispersive treatment
of B → ππ decay considered in [17,18]. However, the dif-
ferent masses of the decaying particles in the two processes
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require specific treatments. In Sect. 3, we derive a general-
ized Omnès representation for K → ππ decay by solving
the inhomogeneous Hilbert problem [19,20] in the direct
and the crossed channels. In Sect. 4, we compare our re-
sults with the dispersion relations considered previously in
the literature, and show how to combine them with lattice
calculations in order to predict the physical amplitude.

2 LSZ reduction and dispersion relations

We consider the decay amplitudes AI of definite isospin,
I = 0, 2, defined by

AI = 〈(π(k1)π(k2))I ; out|Hw(0)|K(p); in〉, (1)

where the “in” and “out ” states are defined with respect
to the strong interactions, and Hw is the weak effective
hamiltonian density [21]

Hw(x) =
GF√

2

∑
k=u,c

VkdV
∗
ks

×

C1(µ)Ok

1 (x, µ) + C2(µ)Ok
2 (x, µ)

+
∑

j=3,...,8

Cj(µ)Oj(x, µ)


 . (2)

Here the Oj are local ∆S = 1, ∆B = 0 operators and the
Cj the corresponding Wilson coefficients, which take into
account perturbatively the strong dynamics at distances
shorter than 1/µ. We assume that a factor i was included
in the definition of the operators, so that the amplitudes
(1) satisfy time reversal invariance, up to the complex co-
efficients in (2).

For our purpose it is more convenient to start from the
S-matrix element

SI = 〈π(k1)π(k2); out|K(p); in〉, (3)

where the transition from the “in” to the “out” states is
achieved by both the strong and weak interactions. By
expanding the S-matrix to first order in the weak inter-
actions one obtains the expression (1) of the decay ampli-
tude. Alternatively, by applying the LSZ reduction [16] to
the K meson in (3), the decay amplitude (1) is expressed
as

AI =
1√
2p0

〈π(k1)π(k2); out|ηK(0)|0〉, (4)

where ηK(x) = KxφK(x) denotes the source operator (Kx

is the Klein–Gordon operator and φK the interpolating
field of the kaon). In a Lagrangian theory the source op-
erator has the formal expression

ηK(x) =
δLint

δφK
− ∂µ

δLint

δ∂µφK
, (5)

i.e. it has contributions from both the strong and weak
parts of the interaction Lagrangian. In what follows we do

not need the explicit expressions of the sources, but only
the significance of the matrix elements involving them.
We stress also that throughout the derivation the sources
are on-shell operators, defined in terms of the physical
interpolation fields.

The matrix element (4) depends on the momenta k1
and k2 of the two pions. We shall consider it as a func-
tion of the invariant variables s = (k1 + k2)2, t = k2

1,
u = k2

2. The physical amplitude corresponds to the val-
ues s = m2

K , t = m2
π and u = m2

π. The extrapolation to
arbitrary external momenta can be achieved by the LSZ
reduction formalism [16]. We remark that (4) is similar
to the definition of the electromagnetic form factor of the
pion, where ηK is replaced by the electromagnetic current
Jµ. We can apply therefore the standard methods used in
deriving the dispersion relations for the pion form factor
[22]. Making the LSZ reduction of one final pion in (4),
we obtain

AI(s, t) =
i√

4k10p0

×
∫

dxeik1xθ(x0)〈π(k2)|[ηπ(x), ηK(0)]|0〉, (6)

where ηπ(x) is the source of the reduced pion. We left
aside the so-called “degenerate terms” which are poly-
nomial in the Lorentz invariant variables [22]. Then (6)
defines a function holomorphic for those values of the ex-
ternal squared momenta s and t for which the integral
is convergent (for the unreduced pion we take the phys-
ical value u = m2

π). Due to the presence of θ(x0), the
integral over x0 converges in the upper half of the k10
complex plane, Imk10 > 0. The causality property of the
commutator restricts the integral over the spatial vari-
ables to |x| < |x0| [22]. We choose the particular Lorentz
frame where the unreduced pion is at rest (k2 = 0), when
k10 = (s − t − m2

π)/2mπ and

k2
1 = [s − (

√
t + mπ)2][s − (

√
t − mπ)2]/(2mπ)2.

Then the integral in (6) represents a function of s and t,
analytic for complex values of these variables, with possi-
ble discontinuities along the real axes. The rigorous proof
of the analyticity in the external masses is actually a dif-
ficult problem and requires a more detailed analysis [23].
Here we do not attempt to give a proof, but only use the
LSZ representation to understand the meaning of the dis-
persive variables and to read off the contributions to the
spectral functions appearing in the dispersion relation.

The discontinuity across the real axis is obtained for-
mally from the expression (6) by replacing iθ(x0) by 1/2,
inserting a complete set of intermediate states in the com-
mutator [ηπ(x), ηK(0)] and using translational invariance
[22]. The two terms in the commutator allow us to decom-
pose the spectral function as

σ = σs + σt, (7)

where

σs =
1

2
√

4k01p0

∑
n

δ(k1 + k2 − pn)〈π(k2)|ηπ(0)|n〉

× 〈n|ηK(0)|0〉 (8)
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and

σt =
1

2
√

4k01p0

∑
n

δ(k1 + pn)〈π(k2)|ηK(0)|n〉〈n|ηπ(0)|0〉.
(9)

In these relations the summation is over intermediate
states consisting of physical particles, with an implicit in-
tegration over their momenta. By the subscripts s (t), we
anticipate the fact that σs receives contributions from the
s-channel (K → ππ) and σt from the t-channel (π → Kπ).
Accordingly, we can write the amplitude as a sum of two
terms, AI

s and AI
t , obtained by a dispersion representation

involving the spectral function σs and σt, respectively. In
order to evaluate the spectral functions, we recall that the
sources contain contributions from both the strong and
the weak interactions, the last ones being treated to first
order.

Let us consider first the spectral function σs defined
in (8). As discussed in [18], the intermediate states n
which contribute to the unitarity sum are generated by
either the weak or the strong part of the source ηK , un-
dergoing a rescattering to the final ππ state by a strong
(weak) process, respectively. The first contributions rep-
resent the so-called “final-state interactions” (FSI), while
the second are usually interpreted as “initial-state inter-
actions” (ISI). The lowest intermediate state contributing
to FSI consists of two pions, which produces the branch-
point s = 4m2

π, while for the ISI the lowest intermedi-
ate state is the pair K∗π, responsible for the threshold
s = (mK∗ + mπ)2. In order to write the specific contribu-
tions, we recall that in the LSZ formalism the matrix ele-
ments of the sources represent, up to kinematical factors,
the physical decay or scattering amplitudes [22]. Thus, ac-
cording to (4), 〈ππ|ηK(0)|0〉 is the amplitude of the weak
decay of K into two pions (here only the weak part of
the source contributes), while 〈π(k2)|ηπ(0)|n〉 is the am-
plitude of either the strong or the weak n → ππ transition,
depending on which part of the source is considered.

A remarkable property of σs is that it depends only
on s, being independent of the variable t [18,22]. This can
easily be seen by recalling that the intermediate states |n〉
consist of physical particles. By choosing the c.m. system,
where p2

n = s is the total energy squared, we see that the
matrix elements in (8) depend only on s and the physical
masses. In the two-particle approximation of the unitarity
sum, the integral in (8) can be performed exactly [17].
According to the discussion above we can write

σs(s) = σFSI(s) + σISI(s), (10)

where the first contributions to each term are

σFSI(s) = θ(s − 4m2
π)M∗

ππ→ππAK→ππ

+ θ(s − 4m2
K)M ∗̄

KK→ππAK→K̄K + . . . , (11)

σISI(s) = θ(s − (mK∗ + mπ)2)
× A∗

K∗π→ππMK→K∗π(s) + . . . (12)

In the above relations Mππ→ππ and MK̄K→ππ denote on-
shell S-wave strong scattering amplitudes at c.m. energy
squared s, and AK→ππ (MK→K∗π), etc., are weak (strong)

decay amplitudes. The amplitude AI
s can be recovered

from the discontinuity by means of a dispersion integral.
Neglecting for the moment possible subtractions and poly-
nomials in the Mandelstam variables, we have

AI
s(s) =

1
π

∞∫
4m2

π

σFSI(s′)
s′ − s

ds′ +
1
π

∞∫
(mK∗+mπ)2

σISI(s′)
s′ − s

ds′.

(13)
We consider now the spectral function σt defined in

(9). The weak part of the source ηπ is responsible for the
FSI in the t-channel, with the lowest branch-point at t =
(mK + mπ)2. The strong part of the source ηπ generates
the ISI in the t-channel, with the lowest branch-point t =
9m2

π. As above, it is easy to show that σt does not depend
on s and can be written as

σt(t) = σ̃FSI(t) + σ̃ISI(t), (14)

where, according to the above discussion, the lowest terms
are

σ̃FSI(t) = θ(t − (mK + mπ)2)N∗
πK→πKAπ→πK + . . . ,

σ̃ISI(t) = θ(t − 9m2
π)N∗

π→3πA3π→πK + . . . (15)

Here NπK→πK is the πK S-wave scattering amplitude at
c.m. energy squared equal to t, and Aπ→πK(Nπ→3π) etc.,
are weak (strong) decay amplitudes. Neglecting again pos-
sible subtractions, we write the amplitude AI

t in terms of
its discontinuity in the t-channel by a dispersion integral:

AI
t (t) =

1
π

∞∫
(mK+mπ)2

σ̃FSI(t′)
t′ − t

dt′+
1
π

∞∫
9m2

π

σ̃ISI(t′)
t′ − t

dt′. (16)

The total amplitude AI(s, t) is then expressed as the sum

AI(s, t) = AI
s(s) + AI

t (t), (17)

the physical amplitude being obtained for s = m2
K and t =

m2
π. We note in particular that AI

t (m
2
π) is a real number,

since the point t = m2
π is situated below the cuts in the

dispersion relation (16).
The significance of the variables s and t is clear from

the above discussion: s is defined in terms of the pion mo-
menta as s = (k1 + k2)2 and t is equal to the external
momentum squared of one pion, t = k2

1. Therefore, it rep-
resents the mass squared of one external pion. We recall
that in the above formalism no off-shell extrapolation was
assumed, the sources entering the matrix elements being
on-shell operators.

3 Omnès representations

It is convenient to write the above dispersion relations
in terms of the phases of the rescattering amplitudes in
the elastic region, according to the Watson theorem [24].
To illustrate the method, we consider first the amplitude
AI(s, m2

π) as a function of s at physical t = m2
π. The

general case of AI(s, t) will be treated in Sect. 3.2. This
generalization is useful in order to incorporate informa-
tion available on the decay amplitude at nonphysical pion
masses.
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3.1 Amplitude AI(s, m2
π)

In this case, as mentioned above, the last term in (17) is
a real constant. Denoting A± = AI(s ± iε, m2

π), we write
the unitarity relation in the s-channel as

A+ − A−
2i

= θ(s−4m2
π)M∗

I (s)A+ +θ(s−sin)σin(s), (18)

where

MI(s) =
ηI
0e2iδI

0 − 1
2i

, (19)

is the S-wave ππ scattering amplitude of isospin I. In
(18) σin denotes the sum of the inelastic FSI and the ISI
spectral functions (we take sin equal to the FSI inelastic
branch-point 4m2

K , which is lower than the ISI branch-
point (mK∗ + mπ)2). In the r.h.s. of (18) we note the
presence of the amplitude A+ = AI(s + iε, m2

π), due to
the fact that the intermediate two pions in the unitarity
sum are physical particles, as we mentioned above.

The relation (18) can be written as an inhomogeneous
Hilbert equation [19]:

A+(1−2iM∗
I )−A− = 2iθ(s−sin)σin(s), s ≥ 4m2

π. (20)

We shall construct the solution by imposing time reversal
invariance, which implies that the amplitudes satisfy the
reality condition AI(s∗) = A∗

I(s) and the discontinuity
across the cut is equal to the imaginary part [20]. Using
the expression (19) we obtain from (20), for s ≥ 4m2

π,

ImAI cos δI
0 − ReAI sin δI

0 = θ(s − sin)
2Re[σineiδI

0 ]
1 + ηI

0
. (21)

We define now the Omnès function

ΩI(s) = exp


s − s0

π

∞∫
4m2

π

δI
0(s′)ds′

(s′ − s0)(s′ − s)


 , (22)

assuming that one subtraction is sufficient. The bound-
ary values of ΩI(s) satisfy the relations ΩI(s ± iε) =
exp(±iδI

0)|ΩI(s)| (we recall that the modulus |ΩI(s)| is
obtained from (22) by taking the principal value of the
integral). Then (21) can be written as

Im
[
AI(s, m2

π)
ΩI(s)

]
= θ(s − sin)

2
1 + ηI

0

Re[σineiδI
0 ]

|ΩI(s)| . (23)

We define now the function GI(s) through the relation

AI(s, m2
π) = ΩI(s)GI(s), (24)

and express it by a dispersion relation in terms of its imag-
inary part given in (23):

GI(s) = PI(s) +
s − s0

π

×
∞∫

sin

ds′ 2
1 + ηI

0

Re[σin(s′)eiδI
0(s′)]

|ΩI(s′)|(s′ − s0)(s′ − s)
. (25)

Here PI(s) is a polynomial and, for convenience, we wrote
the integral with one subtraction. The subtractions are
actually not relevant in our method, since we shall pa-
rameterize the function GI(s) in a different way, using the
technique of conformal mappings1. Namely, since by con-
struction GI(s) is analytic in the s-plane cut for s > sin,
we consider the variable

z(s) =

√
sin − m2

π − √
sin − s√

sin − m2
π +

√
sin − s

, (26)

which maps the s-plane cut along the real axis for s > sin
onto the disk z < 1 of the plane z = z(s). Actually, the
mapping of the s-plane onto the unit disk is not unique
[26]. For further convenience we chose the mapping such
that z(m2

π) = 0. Now we expand GI(s) in powers the
variable z:

GI(s) =
∑

n

a(I)
n [z(s)]n, (27)

where a
(I)
n are real numbers. This series converges in the

whole disk |z| < 1, i.e, in the whole s-plane cut along
s > sin, in particular at the physical point s = m2

K .
Inserting (27) into (24) we obtain a representation of

the amplitude

AI(s, m2
π) = ΩI(s)

∑
n

a(I)
n [z(s)]n, (28)

in terms of the known S-wave ππ phase shifts entering
the Omnès function ΩI(s), and the real Taylor coefficients
a
(I)
n . In Sect. 5 we shall discuss how these coefficients can

be determined by using lattice results at unphysical val-
ues of s. The physical amplitude is obtained from (28) by
setting s = m2

K .

3.2 Amplitude AI(s, t)

We consider now the amplitude AI(s, t) for arbitrary ar-
guments. It turns out that the elastic unitarity for AI(s, t)
cannot be immediately solved by means of an Omnès rep-
resentation, as in the above treatment of AI(s, m2

π). In-
deed, from the relations (17) and (10)–(13) the disconti-
nuity of AI(s, t) across the cut along s > 4m2

π at fixed t
is

AI(s + iε, t) − AI(s − iε, t)
2i

= M∗
I (s)AI(s + iε, m2

π)

+ θ(s − sin)σin(s). (29)

We note the presence, in the r.h.s., of the amplitude AI(s+
iε, m2

π), due to the fact that the intermediate states in
the unitarity sum consist of physical particles. Therefore
the functions which appear on the two sides of (29) are

1 The method of conformal mappings was proposed in par-
ticle physics a long time ago [25]. In a context similar to the
present one, the method was applied to the pion electromag-
netic form factor in [26]
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different, and this relation cannot be written as a Hilbert
boundary value equation.

This difficulty can be circumvented if we treat sepa-
rately the functions AI

s(s) and AI
t (t) defined in (13) and

(16), respectively. Denoting As,± = AI
s(s ± iε) we obtain

from (10)–(13)

As,+ − As,−
2i

= θ(s − 4m2
π)M∗

I (s)AI(s + iε, m2
π)

+ θ(s − sin)σin(s). (30)

In order to bring this relation to a form convenient for the
Muskhelishvili–Omnès technique, we use the expression,
according to (17),

AI(s + iε, m2
π) = As,+ + AI

t (m
2
π). (31)

Then (30) becomes

As,+(1 − 2iM∗
I ) − As,− = 2i[θ(s − 4m2

π)M∗
I AI

t (m
2
π)

+ θ(s − sin)σin(s)]. (32)

This equation is similar to (20), except for an additional
term in the r.h.s., which contributes to the imaginary part
above the elastic threshold 4m2

π. Therefore, As(s) will be
of the form (24), with the function GI(s) given by a dis-
persion relation similar to (25), containing in addition the
term

AI
t (m

2
π)

s − s0

π

∞∫
4m2

π

ds′ 2
1 + ηI

0

Re[M∗
I (s′)eiδI

0(s′)]
|ΩI(s′)|(s′ − s0)(s′ − s)

,

(33)
where we took into account that AI

t (m
2
π) is a real constant,

as mentioned below (17).
It is convenient to separate in this integral the contri-

bution of the inelastic region s > sin, combining it with
the contribution of the inelastic term σin and expanding
them in powers of the variable z defined in (26). Therefore,
we express AI

s(s) by

AI
s(s) = ΩI(s)

[
AI

t (m
2
π)fI(s) +

∑
n

c(I)
n [z(s)]n

]
, (34)

with

fI(s) =
s − s0

π

sin∫
4m2

π

sin δI
0(s′)ds′

|ΩI(s′)|(s′ − s0)(s′ − s)
, (35)

where we took along the elastic region ηI
0(s) = 1 and MI =

eiδI
0 sin δI

0 .
It is convenient to choose the subtraction point s0 =

m2
π in both the expression (22) of the Omnès function

and the definition (35) of the function fI(s). This implies
ΩI(m2

π) = 1 and fI(m2
π) = 0. By recalling also that the

conformal mapping (26) was defined such as z(m2
π) = 0,

it follows that the amplitude AI
s(s) given by (34) is nor-

malized as
AI

s(m
2
π) = c

(I)
0 . (36)

We consider now the second term in the decomposi-
tion (17), namely the amplitude AI

t (t). In order to obtain
an Omnès representation, we must work with amplitudes
ÃJ(s, t) of definite isospin in the t-channel, π → πK. By
crossing symmetry we can write

AI(s, t) =
∑

J= 1
2 , 3

2

CIJ ÃJ(s, t), I = 0, 2, (37)

where the matrix CIJ is known from the elastic πK scat-
tering [27]. Each amplitude ÃJ(s, t) admits a decomposi-
tion similar to (17):

ÃJ(s, t) = ÃJ
s (s) + ÃJ

t (t). (38)

We consider the amplitude ÃJ
t (t) and define Ãt,± = ÃJ

t (t±
iε). Then the unitarity relation in the t-channel, given by
(14)–(16), can be written as

Ãt,+ − Ãt,−
2i

= θ(t − (mK + mπ)2)N∗
J (t)ÃJ(m2

K , t + iε)

+ θ(t − tin)σ̃in(t), (39)

where

NJ(t) =
η̃J
0 e2iδ̃J

0 − 1
2i

, (40)

denotes the S-wave πK scattering amplitudes at c.m. en-
ergy squared equal to t, and σ̃in(t) the contribution of the
inelastic FSI and ISI t-channels. We take tin equal to the
ISI branch-point 9m2

π, which is lower than the inelastic
FSI branch-point (mK + mη)2.

Since the intermediate πK state in the unitarity sum
(9) consists of physical particles, in the r.h.s. of (39) is a
contribution to the amplitude ÃJ(m2

K , t + iε). By using
the expression ÃJ(m2

K , t+iε) according to (38) we obtain

Ãt,+(1 − 2iN∗
J ) − Ãt,−

= 2i
[
θ(t − (mπ + mK)2)N∗

J ÃJ
s (m2

K)

+θ(t − tin)σ̃in(t)
]
. (41)

The solution of this equation can be obtained following the
procedure applied to the function AI

s(s). We introduce the
Omnès function

Ω̃J(t) = exp


 t − t0

π

∞∫
(mπ+mK)2

δ̃J
0 (t′)

(t′ − t0)(t′ − t)
dt′


 ,

(42)
and express the ratio ÃJ

t (t)/Ω̃J(t) through a dispersion
relation in terms of its imaginary part calculated from
(41). Then ÃJ

t (t) can be written as

ÃJ
t (t) = Ω̃J(t)


P̃J(t)
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+
t − t0

π

∞∫
(mπ+mK)2

dt′
2

1 + η̃J
0

Re[ÃJ
s (m2

K)N∗
J (t′)eiδ̃J

0 ]
|Ω̃J(t′)|(t′ − t0)(t′ − t)

+
t − t0

π

∞∫
tin

dt′
2

1 + η̃J
0

Re[σin(t′)eiδ̃J
0 ]

|Ω̃J(t′)|(t′ − t0)(t′ − t)


 . (43)

We recall that the quantities ÃJ
s (m2

K) entering this rela-
tion are complex numbers.

We further separate in (43) the contribution of the
elastic part of the cut, and take into account the higher
singularities by means of a conformal mapping. Namely,
we define the variable

w(t) =

√
tin − m2

π − √
tin − t√

tin − m2
π − √

tin − t
, (44)

which maps the t-plane cut for t > tin onto the disk |w| <
1, such that w(m2

π) = 0, and expand the polynomial and
the inelastic part of (43) in powers of this variable:

P̃J +
t − t0

π

∞∫
tin

dt′
2

1 + η̃J
0

×Re{[ÃJ
s (m2

K)N∗
J (t′) + σin(t′)]eiδ̃J

0 }
|Ω̃J(t′)|(t′ − t0)(t′ − t)

=
∑

c̃(J)
n [w(t)]n, (45)

where c̃
(J)
n are real numbers. Then (43) becomes

ÃJ
t (t) = Ω̃J(t)

[
ReÃJ

s (m2
K)gJ(t) +

∑
n

c̃(J)
n [w(t)]n

]
,

(46)
where we defined

gJ(t) =
t − t0

π

tin∫
(mπ+mK)2

sin δJ
0 dt′

|Ω̃J(t′)|(t′ − t0)(t′ − t)
. (47)

We took into account the fact that in the elastic region
η̃J
0 = 1 and Ñ∗

Jeiδ̃ = sin δ̃J
0 .

It is convenient to choose the subtraction point t0 =
m2

π in both the Omnès function (42) and the definition
(47) of gJ(t). This means that Ω̃J(m2

π) = 1 and gJ(m2
π) =

0. Recalling also that the conformal variable w(t) was de-
fined in (44) such that w(m2

π) = 0, we obtain from (46)

ÃJ
t (m2

π) = c̃
(J)
0 . (48)

Collecting (17), (34), (37) and (46), we express the
amplitude AI(s, t) as

AI(s, t) = ΩI(s)

[
AI

t (m
2
π)fI(s) +

∑
n

c(I)
n [z(s)]n

]
(49)

+
∑

J

CIJ Ω̃J(t)

[
ReÃJ

s (m2
K)gJ(t) +

∑
n

c̃(J)
n [w(t)]n

]
,

where the functions fI(s) and gJ(t) are defined in (35)
and (47), respectively (we recall that sin = 4m2

K and tin =
9m2

π). In (49) we must insert, according to (17), (37), (38)
and (48),

AI
t (m

2
π) =

∑
J

CIJ c̃
(J)
0 . (50)

Also, using the crossing relation (37), we express the quan-
tity ReÃJ

s (m2
K) entering (49) as

ReÃJ
s (m2

K) =
∑

L=0,2

C−1
JLReAL

s (m2
K), J =

1
2
,
3
2
, (51)

where ReAL
s (m2

K) is obtained from (34). The relations
(49)–(51) provide a system of coupled equations, which
express each amplitude AI(s, t)(I = 0, 2) in terms of ππ
and πK the S-wave phase shifts and the real coefficients
c
(I)
n and c̃

(J)
n (J = 1/2, 3/2).

At fixed t = m2
π the amplitude (49) takes the simple

form

AI(s, m2
π) = ΩI(s)

[∑
J

CIJ c̃
(J)
0 {fI(s) + Ω−1

I (s)}

+
∑

n

c(I)
n [z(s)]n

]
, (52)

where we introduced the last term of (49), i.e. AI
t (t) eval-

uated for t = m2
π, inside the brackets, and expressed

AI
t (m

2
π) according to (50).

It is easy to verify that the function multiplying the
Omnès factor in the relation (52) is real for s < sin. In-
deed, the coefficients c

(I)
n and c̃

(J)
0 are real, and for values

of s below the inelastic threshold the variable z(s) is real.
The only terms having an imaginary part for s < sin are
the function fI(s) and the Omnès function ΩI(s). But it
is easy to check, using (22) and (35), that their imaginary
parts compensate in (52):

Im[fI(s) + Ω−1
I (s)] =

sin δI
0(s)

|ΩI(s)| − sin δI
0(s)

|ΩI(s)| = 0. (53)

Therefore, the first term in the r.h.s. of (52) is real along
the elastic region and can be included in the expansion
in powers of the variable z(s). This shows that the gen-
eral representation (49) reduces, when t = m2

π, to the
Omnès representation (28) derived in the previous sub-
section. For arbitrary values of t, however, the amplitude
(49) has additional cuts in the elastic region of both the
s- and t-channels.

The physical amplitude is obtained from (49) for s =
m2

K and t = m2
π. With our normalization, it depends on

the S-wave phase shift of ππ scattering and the Taylor
coefficients c

(I)
n and c̃

(J)
n (the S-wave phase shift of the

πK scattering contribute only indirectly, through these
coefficients). As proved in [25], by the conformal mapping
the rate of convergence is improved, so we expect to obtain
an accurate representation at low energies with a small
number of terms in the expansions. In the next section
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we shall discuss how to determine the coefficients c
(I)
n and

c̃
(J)
n using lattice results at unphysical points.

We end this section with two remarks: first we notice
that in the above derivation the symmetry between the
two final pions is not explicit. This symmetry can be easily
imposed by writing down a dispersion relation symmetri-
cal with respect to the interchange of t and u. Namely,
instead of (17) we have, more generally

AI(s, t, u) = AI
s(s) +

1
2

[
AI

t (t) + AI
u(u)

]
, (54)

where AI
u(u) satisfies a dispersion relation similar to (46).

The second remark concerns the starting point used
for the analytic extrapolation: in our analysis we consid-
ered the amplitude given by the expression (4), which was
obtained by making the LSZ reduction of the kaon in the
S-matrix element (3). Alternatively, by reducing first one
pion instead of the kaon, we obtain the expression

AI =
1√
2k10

〈π(k2)|ηπ(0)|K(p)〉. (55)

By further reducing the K-meson, one obtains, instead of
(6), the expression

AI(s, t) =
i√

4k10p0

∫
dxe−ipxθ(x0)

× 〈π(k2)|[ηπ(0), ηK(x)]|0〉, (56)

which allows the analytic continuation to be done with
respect to the variables s = p2 and t = (p−k2)2. It is easy
to see that the spectral function can be written as in (7),
with the corresponding terms similar to (8)–(9), except
that the momentum conservation now reads pn = p in σs

and pn = k2 −p in σt. This implies that the significance of
the various terms in the spectral functions are different in
the two approaches: in (8) the c.m. energy which generates
the intermediate states is yielded by the total momentum
carried by the kaon and the interaction hamiltonian, while
in (9) this energy is provided by the unphysical mass of
the pion. In the alternative approach mentioned above, the
energy in the term σs is yielded by the unphysical mass
of the kaon, while in σt it is provided by the momenta
of the pion and of the hamiltonian. Despite this different
interpretation of the matrix elements, it is easy to see
that the Omnès representation is formally similar in the
two approaches. The differences concern only the inelastic
contributions, parameterized by the expansions in powers
of the conformal mapping variables.

4 Discussion

The Omnès representations derived above generalize pre-
vious results obtained in the literature. In [8,9] the authors
write down an Omnès representation for the decay ampli-
tude as a function of s at fixed t = m2

π, using the formal
analogy with the scalar pion form factor. The decay am-
plitude is identified, up to a constant, to the Omnès factor
ΩI(s) in (28), i.e. the inelastic singularities are neglected.

The role of the inelastic FSI and ISI contributions in the
dispersion relation was discussed in [12], assuming that
the decay amplitude defined in (1) satisfies a Mandelstam
representation.

A similar line is followed in [14], where the weak Hamil-
tonian Hw in (1) is identified with a field operator with the
quantum numbers of the kaon, and is assumed to carry a
non-zero momentum. In this approach the K → ππ decay
amplitude is obtained from a dispersion relation for the
elastic processes K̄K → ππ (s-channel) and πK → πK (t-
channel). Assuming that only S- and P -waves contribute
to both channels, the amplitude is written in [14] as a
sum of functions depending on a single variable, s (t), re-
spectively. The interplay between the weak and the strong
dynamics is however not apparent in this treatment: the
weak K → ππ decay amplitude is given formally by the
amplitude of the strong scattering process K̄K → ππ,
evaluated at an unphysical point.

As we mentioned already, the dispersion relations for
the K → ππ decay require a continuation in the external
momenta. Therefore, the interpretation of the dispersive
variables was not very clear in the previous works. In [8]
the variable s in the dispersion relation for the amplitude
AI(s, t) at fixed t = m2

π was identified with the momen-
tum squared of an off-shell kaon. This raised the subse-
quent criticism [13] which emphasized the ambiguity of
the ChPT calculations for off-shell operators. We mention
also that in [11] the same variable s was identified with
the mass squared of the kaon.

In the present treatment, the LSZ reduction formula
allows the analytic continuation to be done of the ampli-
tudes in the complex planes of the external momenta. No
off-shell extrapolation of the operators is necessary and
the meaning of the variables is clear, as discussed at the
end of the previous section. If we use as a starting point
of the analytic continuation the matrix element (4), the
variable s is defined as s = (k1 + k2)2, and in unphysical
configurations it may be different from the kaon momen-
tum. Moreover, in this case the variable t is equal to k2

1,
and represents the mass squared of the external pion. On
the other hand, if we use as a starting point of the ana-
lytic continuation the expression (55), we have s = p2, i.e.
it represents the mass squared of the external kaon, while
t = (p − k2)2 includes, in unphysical configurations, the
momentum carried by the interaction hamiltonians. This
interpretation allows us to incorporate in the dispersion
relations, at least to a certain extent, the results of the
lattice simulations. We consider for illustration the first
definition of the dispersive variables.

Most lattice calculations simulate matrix elements of
the form 〈π|Oj |K〉, related to the matrix elements of in-
terest 〈ππ|Oj |K〉 by lowest order ChPT in the soft pion
limit [3]. In the limit k1 → 0 we have t = k2

1 = 0 and
s = (k1 + k2)2 = m2

π. Therefore, the lattice simulations of
this type provide the value of the amplitude AI(m2

π, 0).
Direct simulations of the matrix elements 〈ππ|Oj |K〉

are done only for special configurations; for instance, when
the kaon and one pion are at rest. Assuming that the re-
duced pion is at rest, k1 = 0, we have s = t + m2

π +
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2(t1/2)Eπ, where Eπ is the energy of the moving pion.
At present the lattice simulations are done using values
of the mass m̃π larger than the physical one. To match
this situation we take t̃ = m̃2

π, which means that s̃ =
m̃2

π + m2
π + 2m̃πEπ. We assume therefore that AI(s̃, t̃) is

known approximately from the lattice calculations2. Ac-
tually, AI(s̃, t̃) does not correspond exactly to the con-
figuration which is simulated on the lattice, since in the
dispersion relation the unreduced pion has the physical
mass, k2

2 = m2
π. The analytic continuation with respect to

k2
2 requires the reduction of the second pion in the relation

(6), and is more complicated. In the present formalism, we
can assume that the lattice situation is approached by us-
ing a dispersion relation symmetrized with respect to the
interchange of t and u, as in (54), where one pion has the
physical mass and the other a different mass, m̃π. This is
still not identical with the lattice case, but we believe that
even approximate numbers are welcome, since the disper-
sive approach correctly includes the FSI. Using a sufficient
number of points (s̃, t̃), it is possible to determine the coef-
ficients c

(I)
n and c̃

(J)
n of the Taylor expansions in powers of

the conformal variables z and w, and to calculate then the
physical amplitude using the expression (49) for s = m2

K
and t = m2

π.

5 Conclusions

In the present paper we derived Omnès representations
for the K → ππ amplitudes, which include elastic and
inelastic contributions in both the direct and the crossed
channels. We showed that the amplitude is decomposed
as a sum of two functions, one depending only on s and
the other depending only on t. This decomposition follows
naturally from the LSZ formalism and hadronic unitarity
and does not require additional assumptions. The elastic
contributions are parameterized by Omnès factors accord-
ing to the Watson theorem, and the inelastic singularities
are accounted for by the technique of conformal mappings.
The treatment based on LSZ formalism allows a clear in-
terpretation to be given to the dispersion relations and the
meaning of the dispersive variables. The unknown coeffi-
cients c

(I)
n and c̃

(J)
n entering the parameterization (49) of

the amplitude can be determined, at least approximately,
using information provided by lattice calculations at un-
physical momenta. The numerical implementation of this
program is the subject of a future work. We mention fi-
nally that the effects of isospin violation, which were dis-
cussed recently in [28], can be incorporated in the disper-
sive treatment by a suitable modification of the unitarity
relation.
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14. M. Bücher, G. Colangelo, J. Kambor, F. Orellana, Phys.

Lett. B 521, 22 (2001)
15. G. Colangelo, Nucl. Phys. Suppl. 106, 53 (2002)
16. H. Lehmann, K. Symanzik, W. Zimmermann, Nuovo Ci-

mento, 1, 205 (1956); 2, 425 (1957)
17. I. Caprini, L. Micu, C. Bourrely, Phys. Rev. D 60, 074016

(1999); D 62, 034016 (2000)
18. I. Caprini, L. Micu, C. Bourrely, Eur. Phys. J. C 21, 145

(2001)
19. N.I. Muskhelishvili, Singular integral equations (Noord-

hoff, Groningen 1953)
20. T.N. Pham, T.N. Truong, Phys. Rev. D 16, 896 (1977)
21. A.J. Buras, Weak interactions, CP Violation and Rare De-

cays, in Probing the Standard Model of Particle Inter-
actions, Proceedings 1997 Les Houches Summer School,
edited by R. Gupta et al. (Elsevier, Amsterdam 1999),
Vol. I, p. 281

22. G. Barton, Introduction to dispersion techniques in field
theory (Benjamin, New York 1965)

23. G. Källen, A.S. Wightman, Dan. Vid. Selsk. Mat-Fys. Skr.
1, (1958), No. 6

24. K.M. Watson, Phys. Rev. 95, 316 (1958)
25. S. Ciulli, J. Fischer, Nucl. Phys. 24, 465 (1961)
26. M.F. Heyn, C.B. Lang, Zeit. Phys. C 7, 169 (1981); I.

Caprini, Eur. Phys. J. C 13, 431 (2000); J.F. de Trocóniz,
F.J. Yndurain, Phys. Rev. D 65, 093001 (2002)

27. B. Ananthanarayan, P. Buttiker, Eur. Phys. J. C 19, 517
(2001)

28. V. Cirigliano, J. Donoghue, E. Golowich, Phys. Rev. D 61,
093002 (2000)


